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Discrete �ltering of numerical solutions to hyperbolic
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SUMMARY

In the framework of �nite volume approximations to the Euler equations of gas dynamics we introduce
computationally cheap di�erence schemes in addition with e�cient discrete �lter operators correcting
discrete values locally. After presentation of a classical discrete �lter algorithm we describe for the �rst
time the implementation of a TV �lter, originally developed in signal and image processing, in the con-
text of hyperbolic conservation laws on unstructured grids. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider scalar spatially two-dimensional conservation laws

@tu+ @xf(u) + @yg(u)=0

for functions u :R2×R+ � x; t �→ u(x; t)∈D⊂R where f and g are the �ux functions. Systems
of this kind are known to exhibit discontinuities even if the initial condition is arbitrarily
smooth. Therefore, one has to consider weak solutions, for example of type u∈BV ([0; t]→L∞

∩L1(R2)) satisfying

d
dt

∫
�
u dx dy +

∮
@�
f(u)nx + g(u)ny ds=0

for all bounded control volumes �⊂R2 or an equivalent de�nition. Here, n=(nx; ny)T denotes
the unit outer normal vector at �.
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264 A. B �URGEL AND T. SONAR

The simplest case of a numerical approximation of weak solutions is the �nite di�erence
scheme on a cartesian mesh with mesh sizes �x and �y given by

ui; j(t +�t)− ui; j(t)
�t

=− 1
�x
(F(ui+1; j ; ui; j)− F(ui; j; ui−1; j))

− 1
�y

(G(ui; j+1; ui; j)−G(ui; j; ui; j−1))

where Fi+1=2; j :=F(ui+1; j ; ui; j) and Gi; j+1=2 :=G(ui; j; ui; j+1) are numerical �ux functions sup-
posed to satisfy the consistency condition F(s; s)=f(s) and G(s; s)= g(s), respectively. It
was shown by Tadmor that any numerical �ux of this type can be written uniquely in the
viscosity form

Fi+1=2; j=
1
2
(f(ui; j) + f(ui+1; j))− �x

2�t
Q(ui+1; j ; ui; j)(ui+1; j − ui; j)

where Qi+1=2; j :=Q(ui+1; j ; ui; j) is the viscosity coe�cient uniquely characterizing each of these
di�erence schemes. Note that the unconditionally unstable central di�erence corresponds to

Fci+1=2; j :=
1
2 (f(ui; j) + f(ui+1; j))

and that the stabilizing viscosity term can be interpreted as the discretization of a second
derivative @x(D(u)@xu) for some viscosity function D depending on Q (and analogously in y-
direction for G). Hence, the �nite di�erence method is a discretization of a perturbed equation

@tu+ @xf(u) + @yg(u)= �∇ · (D(u)∇u)

where � contains powers of �t;�x;�y.
Nowadays sophisticated di�erence schemes like TVD [1], ENO [2, 3] or WENO [4] methods

rely on non-linear algorithms de�ning the di�usion tensor D implicitly.
In contrast, there exists a various number of non-linear di�usion equations in the area of

image processing, see Reference [5], where we can �nd models of equations with positive
di�usion coe�cients while di�using backwards or e�cient total variation preserving discrete
�lters. The use of these results in the framework of conservation laws can be shown by
considering computationally cheap but oscillating high-order di�erence schemes in conjunction
with such a discrete �lter operator. These methods lead to simple and fast algorithms capable
of eliminating spurious oscillations near shocks without smearing the shocks themselves.
In computational �uid dynamics �rst ideas in this area are developed by Engquist et al. [6]

who designed a discrete �lter to convert a simple second-order scheme into a TVD scheme.
Therefore, in the �rst section of our paper, we want to describe one of their �lter algorithms.
By converting the discrete �lter to the continuous form we reveal its close relationship to
a continuous TV model developed in the area of image processing. Because the total variation
may be the key to new dissipation models, we introduce a discrete TV �lter due to Chan
et al. [7] in Section 3. For the �rst time, we will describe its implementation in the framework
of �nite volume approximation to the Euler equations of gas dynamics on unstructured grids.
Numerical results with remarkable properties are presented.
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2. DISCRETE FILTER OPERATORS

In 1989 Engquist et al. have published an essay about ‘non-linear �lters for e�cient shock
computation’ [6] in which they presented several discrete �lter operators for the numerical
approximation of hyperbolic conservation laws with discontinuous solutions.
For simplicity they considered spatially one-dimensional conservation laws

@tu+ @xf(u)=0; u(x; 0)= u0(x)

with a given �nite di�erence scheme G, so that un+1 =G(un). By processing the discrete
solution with a non-linear conservation form �lter P at every time step,

ũn+1 =P(un+1; un)

they obtain simple and fast algorithms, capable of eliminating spurious oscillations near shocks
without smearing the shock itself.
The most simple form Engquist, L�otstedt and Sj�ogreen suggested for P if there is an

extremum in point j and if |�−uj|¿|�+uj|, is

ũj= uj + sgn(�+uj) ·min
(
|�+uj|; |�−uj|

2

)
(1)

with �+uj= uj+1 − uj and �−uj=−(uj−1 − uj).
In order to transform this discrete �lter into a continuous form, we introduce an arti�cial

time scale ��

ũj − uj
��

=
1
��

sgn(�+uj) ·min
(
|�+uj|; |�−uj|

2

)
(2)

where the left-hand side already represents the continuous term @�u |j.
The expressions |�+uj| and |�−uj| can be transformed by means of a Taylor expansion

|�+uj|= |uj+1 − uj| ≈ |u(xj+1)− u(xj)|= |u(x + h)− u(x)|

=
∣∣∣∣hu′(x) + h

2

2
u′′(x) +O(h3)

∣∣∣∣6|u′(x)|h+
∣∣∣∣h
2

2
u′′(x) +O(h3)

∣∣∣∣
and analogously

|�−uj|6|u′(x)|h+
∣∣∣∣−h

2

2
u′′(x) +O(h3)

∣∣∣∣
That means for the minimum in (2)

min
(
|�+uj|; |�−uj|

2

)

6min
(
|u′(x)|h+

∣∣∣∣h
2

2
u′′(x) +O(h3)

∣∣∣∣; |u′(x)|h2 +
1
2

∣∣∣∣−h
2

2
u′′(x) +O(h3)

∣∣∣∣
)
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Because terms of order less or equal h2 are negligible, it follows that:

min
(
|�+uj|; |�−uj|

2

)
= |u′(x)| ·min

(
h;
h
2

)
+O(h2)

= |∇xu| · h2 +O(h
2) (h¿0)

and

sgn(�+uj)= sgn(∇xu · h+O(h2))
Hence, with the notation F(·)= (h=2��) sgn(·) and the assumption sgn(�+uj)= sgn(∇xu · h)
the approximated continuous form of the discrete �lter (1) is

@�u= |∇xu| h
2��

sgn(∇xu · h)

= |∇xu|F(∇xu · h) (3)

In the context of image processing, we can �nd a de�nition of TV-preserving methods of
�ltering [5] as the steady-state solution of the problem

@tu=−|∇u|F(L(u)); u(x; 0)= u0(x) (4)

with sgn(F(u))= sgn(u), and L(u) is a second-order elliptic operator whose zero-crossings
correspond to edges. The signal u0 is the noisy signal we start with.
If we compare this equation with expression (3) we notice the main di�erence (apart from

the negative sign) in the operator L(u). Contrary to the postulated properties in the de�nition,
L(u) in (3) equals the �rst-order operator ∇u ·h. This can be traced back to the fact that the
�lter in (3) is not TV-preserving, not to speak about TV-diminishing.
Now the question arises if we can modify the �lter (3) on the basis of de�nition (4)

to a TV-preserving one. Therefore, it is possible to replace the �rst-order operator ∇u · h
by a second-order one, for example the Laplace operator �u multiplied with h. This means
we need a discrete term whose continuous version equals �u · h. With the help of Taylor
expansion we can show that the expression �+u′j ful�ls this condition and in consideration
of the negative sign postulated in de�nition (4) the discrete �lter (1) becomes

ũj= uj − sgn(�+u′j) ·min
(
|�+uj|; |�−uj|

2

)
(5)

with �+u′j=(uj+1 − 2uj + uj−1)=h2 as possible discretization.
In order to obtain a reasonable �lter, the possibility that an extremum at xj is followed by

one at xj+1 must be excluded, because the signum function is not de�ned for �+u′j=0.
It is remarkable that Engquist et al. have made the same restriction (that there are no

consecutive extrema) in their more sophisticated TVD �lter algorithms in Reference [6].
Therefore, it seems reasonable to use results achieved in the context of image processing

in order to derive discrete �lter operators for numerical solutions to hyperbolic conservation
laws.
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3. A DIGITAL TV FILTER FROM IMAGE PROCESSING

Due to the fact that the total variation of a numerical scheme for conservation laws plays
a decisive role we have turned our attention to the theory of TV �lters established in the
thesis of Rudin [8] and developed by Osher and his co-workers. As a result Chan et al.
have presented a �nite di�erence �lter on graphs capable of denoising digital images without
blurring jumps or edges in a recent paper [7]. In the following, we will show how this discrete
model can be implemented to give cheap but proper non-linear dissipation to be used in
a very simple CFD code.
Chan et al. consider an undirected graph with a �nite set � of nodes and an edge dictio-

nary E. Now, u : �→R is a digital signal and the value at node i is denoted by ui. At node i
the discrete local variation

|∇iu|=
√∑
j∼i
(uj − ui)2

and for any positive number � the regularized variation

|∇iu|�=
√
|∇iu|2 + �2

is introduced whereas j∼ i means that j is a neighbour of i.
For a signal u0(x) which is assumed to be the random noise contaminated version of a

clean signal, their data-dependent digital TV �lter F�;� : u→ v looks like

vi=F�; �
i (u)=

∑
j∼i
hij(u)uj + hii(u)u0i (6)

for any node i, any existing signal u and output v. The �lter coe�cients are given by

hij(u)=
wij(u)

�+
∑

k∼i wik(u)
; hii(u)=

�
�+

∑
k∼i wik(u)

(7)

with

wij(u)=
1

|∇iu|� +
1

|∇ju|� (8)

and at any node i it holds hii +
∑

j∼i hij=1.
This non-linear low-pass �lter contains two tunable parameters, a small positive regular-

ization parameter � for computational stability and a positive �tting parameter �. While � is
only a technically founded constant, the �tting parameter � is important for the restoration
e�ect. If �2 denotes the variance of the assumed random noise, the size of � is comparable to
1=�2 and acts as an indicator for noise (which should be smoothed) or intrinsic jumps (which
should not be distored by the �lter).
With this background, the adaptive property of the digital �lter can easily understood as

follows. A large local variation |∇u| (large enough to be distinct from noise) indicates a jump
or edge inherited from u0 and should be preserved. The �lter achieves this goal since a large
|∇u| leads to a small wij (compared to �) so that hii is nearly one and hij is nearly zero.
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Figure 1. Lax–Wendro� solution.

This results in the preservation of the jump as expected. The case of a small local variation
|∇u| indicates a �at region with noise inherited from u0 that should be smoothed by the �lter.
Indeed, a small |∇u| e�ects a large wij (compared to �) and therefore hii equals nearly zero
and hij is nearly one which means smoothing of the data.
For image restoration it has been shown that in practice about 60 or 80 rounds of the TV

�ltering algorithm are satisfactory enough for good numerical results.
For the application of the TV �lter in the context of numerical solutions of conservation laws

one has to interpret the noisy signal u0 as an oscillating solution of a hyperbolic conservation
law. In contrast to the situation given in image processing we have no longer globally random
noised data but local oscillations in the surrounding of jumps or shocks. To avoid errors
resulting from the global variance assumption we have developed data-dependent routines
for the computation of a local variance and therewith a local � for all grid points. But our
numerical results have shown, that we obtain best results with a globally setting � much
larger as required in image processing. Furthermore, instead of 60 or 80 rounds of �ltering
as demanded by Chan et al. we obtain same good results with only one single �lter step
acting after an oscillatory steady-state solution is reached with a simple high-order di�erence
scheme.
For the implementation of the digital TV �lter in the framework of a �nite volume approx-

imation to the Euler equations of gas dynamics on unstructured grids we choose a compu-
tationally cheap Lax–Wendro� scheme which leads to an oscillating steady-state solution. Its
density is presented in Figure 1 by the use of isolines in a top view and Figure 3 illustrates
a cut through this data above the airfoil. Afterwards we add one single �lter step with the
non-linear TV �lter and in only one CPU second we get the solution shown in Figures 2
and 4. The tunable parameters are �=0:0001 and �=140. The sharpness of the shock is
entirely preserved and the spurious oscillations are smoothed as illustrated in Figures 3 and
4. Even the oscillations around the smaller shock under the pro�le are smoothed by the �lter
without smearing the shock itself as shown by Figure 6 in comparison to the Lax–Wendro�
solution in Figure 5. The digital TV �lter yields smooth behaviour in continuous regions and
high resolution of shocks.
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Figure 2. Solution with TV �lter.

Figure 3. Lax–Wendro� solution above the airfoil.

Figure 4. Filtered solution above the airfoil.
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Figure 5. Lax–Wendro� solution below the airfoil.

Figure 6. Filtered solution below the airfoil.

4. CONCLUSIONS

We have presented new non-linear arti�cial dissipation terms based on discrete �lter operators
originally developed in the area of image processing. While in more sophisticated di�erence
schemes like TVD, ENO or WENO methods it is hard or even impossible to get an insight
into the contained numerical dissipation the new class of methods has the promise that the
dissipation is explicitly known everywhere. We hope to analyse non-linear di�usion equations
further in the future in order to create whole new families of numerical schemes with con-
trolled dissipation which also use backward di�usion in order to sharpen shocks. As another
research direction we want to consider central di�erences of very high order which have to
be equipped with fast discrete TV �lters.
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